Synthesis of Calix[4]pyrroles: A Class of New Molecular Receptor

Shi Jun SHAO*, Xian Da YU, Shu Qin CAO

Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 342 Tianshui Rd., Lanzhou 730000

Abstract: Calix[4]pyrroles, as a class of new molecular receptor in the area of supramolecular chemistry, have displayed interesting anion and neutral substrate binding properties. In this paper, several new calix[4]pyrrole macrocycles were synthesised and characterized.

Keywords: Calix[4]pyrroles; porphyrinogen; condensation; pyrrole; ketone; homologues.

Recently Sessler and co-workers discovered that the *meso*-octaalkylporphyrinogens showed interesting anion and neutral substrate binding properties and might serve as a class of new easy-to-make molecular receptor in the area of supramolecular chemistry¹. However, the *meso*-octaalkylporphyrinogens are not *bona fide* precursors of the porphyrins. Sessler *et al.* thought this class of macrocycle was perhaps mis-named and might better be referred to as calix[4]pyrroles². This renaming, which is supported by structural studies, helps establish an obvious analogy to the calixarenes.

Scheme 1.

R¹COR²: 1. Cyclopentanone; 2. CH₃COCH₂CH(CH₃)₂; 3. PhCOCH₃

Shi Jun SHAO et al.

The first such species, meso-octamethylcalix[4]pyrrole, was obtained over a century ago by Baeyer. Subsequently, this synthesis was refined by a number of research groups The macrocycle of calix[4]pyrroles is formed by electrophilic α -substitution of pyrrole by ketone, acid-catalyzed oligomerization, and spontaneous, non-template cyclization wherein four pyrrole units are combined⁶ (see **Scheme 1**).

The new compounds 1-3 were prepared according to the one-step method by the condensation of equimolar quantities of pyrrole and the relevant ketone in MeOH or EtOH, at room temperature, catalyzed by hydrochloric acid or 4-toluenesulfonic acid, followed by extraction and repeated crystallization from suitable solvents to gave white crystals in 5~30% yields, and then dried in vacuo at 60°C. The product of pyrrole with methyl iso-butyl ketone consisted of two equipollent isomers (compd. 2a and 2b). Their structures have been characterized by IR, FAB-MS, and ¹H-NMR. The results of elemental analysis tally with the calculated data.

Compd.	m.p.(°C)	FAB-Ms(m/z)	$IR(v, cm^{-1})$	¹ H-NMR(CDCl ₃ , δ ppm)
1	231-232	532(M ⁺)	3563,3497,3414,3213,	7.01(broad, m, 4H, NH)
			3107,2953,2868,1577,	5.84(s, 8H, pyrrole CH)
			1450,1415,1419,1226,	2.00(t, 16H, CH ₂)
			1041,764	1.68(t, 16H, CH ₂)
2a	225-227	596(M ⁺),581,	3437,3109,2955,2866,	6.93(broad, m, 4H, NH)
		539,481,425	1575,1464,1413,1369,	5.88(s, 4H, pyrrole CH)
			1294,1200,1049,768	5.85(s, 4H, pyrrole CH)
				1.78-1.39(m, 24H, CH ₃ , CH ₂ CH)
				0.81-0.60(m, 24H, C(CH ₃) ₂)
2b	172-173	596(M ⁺),581,	3443,3111,2955,2868,	6.93(broad, m, 4H, NH)
		539,481,425	1576,1464,1415,1367,	5.88(s, 4H, pyrrole CH)
			1292,1201,1045,767	5.85(s, 4H, pyrrole CH)
				1.78-1.39(m, 24H, CH ₃ , CH ₂ CH)
				0.80-0.60(m, 24H, C(CH ₃) ₂)
3	217-219	676(M ⁺)	3452,3418,3329,2978,	7.19(broad, m, 24H, C ₆ H ₅ and NH)
			1944,1877,1802,1752,	5.87(d, 4H, pyrrole CH)
			(1703),1572,1489,1444,	5.75(d, 4H, pyrrole CH)
			1215,1026,772,698	1.89(s, 12H, CH ₃)

Table 1. IR, MS and ¹H-NMR data of compounds 1-3

Acknowledgment

This work was financially supported by the Director Foundation of Lanzhou Institute of Chemical Physics(96-07 and 98-06).

References

- 1. P. A. Gale, J. L. Sessler, and V. Kral, J. Chem. Soc., Chem. Commun., 1998, (1), 1.
- 2. P. A. Gale, J. L. Sessler, V. Kral, and V. Lynch, J. Am. Chem. Soc., 1996, 118, 5140.
- P. Rothemund, C. L. Gage, J. Am. Chem. Soc., 1955, 77, 3340.
 W. H. Brown, B. J. Hutchinson, and M. H. MacKinnon, Can. J. Chem., 1971, 49, 4017.
- D. Jacoby, C. Floriani, A. Chiesi-villa, and C. Rizzoli, J. Am. Chem. Soc., 1993, 115, 3595.
 J. Fuhrhop, G. Penzlin, "Organic Synthesis---Concepts, Methods, Starting Materials", Verlag Chemie, Weinheim, 1983, p.226.

Received 6 October 1998